

университет ЕҢБЕКТЕРІ

ТРУДЫ УНИВЕРСИТЕТА

Nº3 2018

- Машиностроение. Металлургия
- Геотехнологии
- Строительство. Транспорт
- Экономика
- Автоматика. Энергетика

ЮСУПОВ Х.А., ДЖАКУПОВ Д.А., БАШИЛОВА Е.С. Влияние схем вскрытия технологических блоков при отработке месторождений урана	76
СӘБДЕНБЕКҰЛЫ Ө., КАПАСОВА А.З., БУЛЕКБАЕВ Е.Б., ШАШУБАЙ Н.Ш. Сілемді құрайтын қалыңдықтардың тау жыныстарының беріктілік құркатын құру	79
КОПОБАЕВА А.Н., АМАНГЕЛДІҚЫЗЫ А., АСҚАРОВА Н.С., МАКАТ Д.К. Тектоническое районирование Центрального Казахстана	82
РАЗДЕЛ 4. СТРОИТЕЛЬСТВО, ТРАНСПОРТ	88
ОМАРОВ А.Р., АХАЖАНОВ С.Б. Современные методы испытаний свай в грунте	88
КРИВЦОВА О.Н., АНДРЕЯЩЕНКО В.А., ПАНИН Е.А., ФРАНЦ Ю.Ю. Коррозия арматурного проката в постпрокатный период: причины и способы его защиты	93
МУХАМЕДЖАНОВА А.Т. Прикладные программы в транспортном строительстве	97
КАСИМОВ А.Т., ЖОЛМАГАМБЕТОВ С.Р., ХАБИДОЛДА О., КАСИМОВА А.А. К применению МКР для расчета слоистых пластин с учетом сдвиговых деформаций по ее толщине	100
ЖУСУПБЕКОВ А.Ж., БОРГЕКОВА Қ.Б., УТЕПОВ Е.Б., ОМАРОВ А.Р., АХАЖАНОВ С.Б. Применение интерпретационных методов для определения несущей способности составных железобетонных свай	104
РАЗДЕЛ 5. ЭКОНОМИКА	109
ЖАРЫЛКАСЫНОВА А.К. Развитие социальных накопительных систем в Казахстане	109
АНДРЮКОВА И.В. Стратегическое планирование на предприятии	114
ЭУБЭКІР Л.В. Анализ финансовой отчетности— инструмент прогнозирования банкротства предприятия	117
КОРОЛЕВА А.А. Маркетинг территории в условиях цифровой экономики	120
РАЗДЕЛ 6. АВТОМАТИКА. ЭНЕРГЕТИКА. УПРАВЛЕНИЕ	124
БРЕЙДО И.В., ИВАНОВ В.А., КОТОВ Е.С. Применение GSM-сетей для передачи технологической информации	124
ТАУПЫҚ Н.Н., ЕСЕНБАЕВ С.Х. Накладной трансформаторный преобразователь для контроля толщины стенки легкосплавных бурильных труб	127
БРЕЙДО И.В., УСОВА Е.Д. Определение зоны прерывистых токов электропривода постоянного тока с широтно-импульсным преобразователем	130
РАЗДЕЛ 7. НАУЧНЫЕ СООБЩЕНИЯ	133
КӨККӨЗ М.М., САТМЕТОВА Т.М. Кодтың инъекциялары және сайттар арасындағы скриптинг	133
АБЗАЛБЕК Г.А. Повышение эффективности инвестиционной активности стран-участниц Евразийского экономического союза	137
МАЗАКОВ Т.Ж., ЖОЛМАГАМБЕТОВА Б.Р. Анализ принципов работы электрокардиографов и влияния помех	141
ШАЙМЕРДЕНОВА Р.Т., МИНИШЕВА А.Р. Қазақстан Республикасында ауылшаруашылықтың даму жағдайы	145
РЕЗЮМЕ	149
ИНФОРМАЦИОННОЕ СООБЩЕНИЕ	161

ӘОЖ 378.147=512.

Болашақ пәнаралы

Кілт сөздер. құзыре ақпараттандыру, қ

Қоғамның жоғар мандарға қоятын та делене түсуде. Жаңа адамгершілігі жоғар мол, белсенді, жасам би құзыретті, өз тес әртүрлі педагогикал асыра алатын өз кәсіб

Елбасы Н.Ә. І Стратегиясы қалыпт си бағыты» атты Жомашық — заманауи даярлау мен қайта Бәсекеге қабілетті дабіз сауаттылығы жоғы Барлық жеткіншек ұ уаттылығына да зоры көрсетті [1].

Білім берудің м үздіксіз білім беру а дан жан-жақты жет лекет тарапынан қол рылатын істер жоспа

ӘДЕБИЕТТЕР ТІЗІМІ

- 1. Сәбденбекұлы Ө. Геомеханика. Қарағанды: ЖШС «САНАТ Полиграфия», 2009. 450 б.
- 2. Сәбденбекұлы Ө. Таужыныстардың сілеміндегі құбылыстар түзетін механика. Қарағанды. ЖШС «№1 Инновациялық орталық», 2006. 236 б.
- 3. Сәбденбекұлы Ө. Техногендік геомеханика техногендік әрекеттердің технологиясын негіздеуші фактор. Білім берудің қазіргі замандағы улгісі: Мамандар даярлаудың жаңа технологиясы. 111-Халықаралық Байқоңыров оқуларының ғылыми жинағы. Жезқазған: ЖезУ, 2003. 231-233 б.

УДК 551.24(574)

А.Н. КОПОБАЕВА, докторант 2 курса, ст. преподаватель,
А. АМАНГЕЛДІҚЫЗЫ, докторант 1 курса, преподаватель,
Н.С. АСҚАРОВА, ассистент,
Д.К. МАКАТ, преподаватель,
Карагандинский государственный технический университет, кафедра ГРМПИ

Тектоническое районирование **Центрального Казахстана**

Ключевые слова: геология, тектоника, тектоническое районирование, Центральный Казахстан, каледониды, герциниды, зоны ТМА, складчатая область, структурно-формационные зоны.

В геологическом отношении территория Центрального Казахстана включает области каледонской и герцинской консолидации с очень сложной тектонической зональностью и широким распространением магматических пород.

Положение Центрального Казахстана в глобальных структурах

Центральный Казахстан охватывает западную часть Урало-Монгольского складчатого пояса (самый крупный структурный элемент континентальной коры в пределах Казахстана), который представляет собой палеозойскую геосинклинально-складчатую область, (рисунок 1) (формирование началось с протерозоя на разных возрастных его уровнях в различных секторах пояса).

Центральная часть Урало-Монгольского пояса на территории Казахстана включает большое количество блоков докембрийских пород в виде поднятых или погруженных массивов протяженностью десятки и сотни километров (Улытауский, Атасу-Моинтинский, Сарысу-Тенизский, Ерементауский, Кокшетауский). Предполагают [2,5] преобладание континентального докембрийского фундамента в палеозоидах этих структур.

Казахстан и, прежде всего, его центральная часть располагается в области перехода от субширотного (в современных координатах) Монголо-Тянь-Шаньского сегмента пояса к меридиональному Уральскому. В генерализованном виде сочетание южных субширотных структур с уходящими к северу субмеридиональными отражает систему планетарных расколов, разделивших рифейскую Пангею на Восточно-Европейскую, Сибирскую и Катазиатскую платформы-материки.

В течение палеозоя, и частично в мезозое-кайнозое, происходили горизонтальные смещения продольно- и поперечно-сдвиговые, надвиговые, последовательно усложнявшие исходное положение подвижных зон и возникавших по ходу развития тектонических структур. Наиболее выразительные наложенные деформации связаны с продольными сдвигами, распространявшимися с востока на запад и принимавшими затем северное направление. Сосредоточение сдвиговых деформаций происходило в Центрально-Казахстанской и Алтае-Саянской областях. Здесь возникли сигмоидальные изгибы, сопровождаемые сдвигами, надвигами, образующими упорядоченную систему разрывных и складчатых нарушений.

В итоге к концу палеозоя-началу мезозоя Центральный Казахстан как область резкого «перелома» субширотных структур на северо-северо-западные приобрела тектоническое строение в виде сочетания изменяющих простирание блоков. Подобное строение принято относить к типу «мозаичных» сгруктур.

Тектоническое ра Центрального Ка

Для этой цели ис ческого районировани на (рисунок 2 по [6]). складчатые системы и це характеризуются ни

Каледонская скла

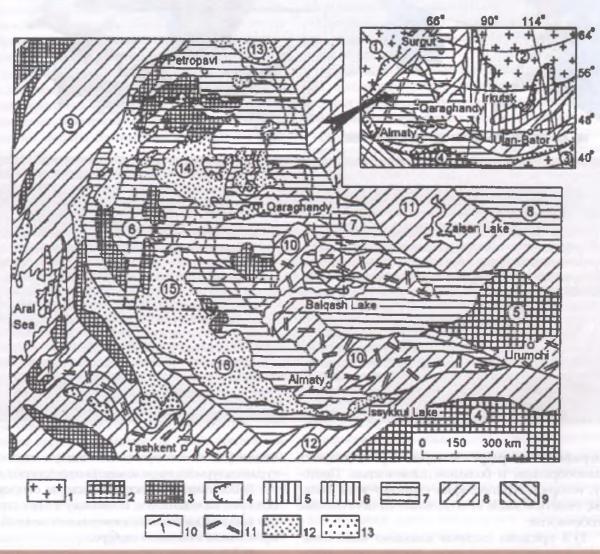
Кокшетау-Северогиз-Тарбагатайская ск. ризуются каледонской Жонгаро-Балхашская с

Условные знаки: 1 — ранн ские массивы, перерабо складчатого пояса: 4 — гра 11 — вулкано-плутоническ зойский), 12 — наложенн

> 4-5 — платформе 6 — Кокчетав-Северс 9 — Уральский, 10 — У

Рисунок 1 – Т

Тектоническое районирование Центрального Казахстана


Для этой цели использована схема тектонического районирования Центрального Казахстана (рисунок 2 по [6]). На схеме изображены все складчатые системы и зоны ТМА, которые вкратце характеризуются ниже.

Каледонская складчатая область

Кокшетау-Северо-Тянь-Шаньская и Чингиз-Тарбагатайская складчатые системы характеризуются каледонской складчатостью, тогда как Жонгаро-Балхашская складчатая система является результатом герцинской фазы складчатости. Пограничной зоной систем каледонской и герцинской консолидации служит девонский вулканический пояс (тельбесский комплекс) [3,4].

Кокшетау-Северо-Тянь-Шаньская складчатая система является самой крупной системой среди других. Система охватывает огромную площадь и протягивается от северных границ описываемого региона до южных.

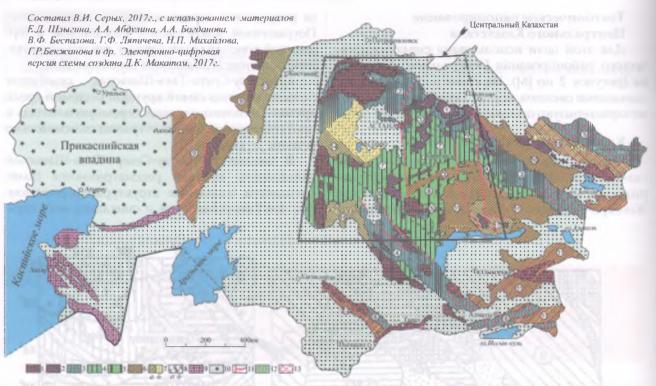
В составе Кокшетау-Северо-Тянь-Шаньской каледонской системы рассматриваются более пятидесяти отдельных структурно-формационных зон (антиклинориев и синклинориев), стра-

Условные знаки: 1— раннедокембрийские платформы, 2— посткарельские платформенные массивы, 3— докембрийские массивы, переработанные палеозойскими тектоническими движениями. 4-8— структуры Урало-Монгольского складчатого пояса: 4— границы пояса, 5— байкалиды, 6— салаириды, 7— каледониды, 8— герциниды. 9—альпиды. 10-11— вулкано-плутонические пояса: 10— Центрально-Казахстанский (девонский), 11— Балхаш-Илийский (позднепалеозойский). 12— наложенные герцинские мульды.

Номера на карте: 1-3— платформы: 1— Восточно-Европейская, 2— Сибирская, 3— Корейско-Китайская. 4-5— платформенные массивы: 4— Таримский, 5— Жунгарский. 6-8— каледонские складчатые пояса: 6— Кокчетав-Северо-Тяньшанский, 7— Чингизский, 8— Алтае-Саянский. 9-12— герцинские складчатые пояса: 9— Уральский, 10— Жунгаро-Балхашский, 11— Иртыш-Зайсанский, 12— Южно-Тяньшанский. 13-16— впадины: 13— Тобольская, 14— Тенизская, 15— Жезказганская, 16— Чуйская.

Рисунок 1— Тектоническая позиция Центрального Казахстана в глобальных структурах (составлено по материалам Ю.А. Зайцева, А.А. Абдулина, Е.Д. Шлыгина и др.— Glukhan, Serykh, 1996

щиялық орта-


Білім берудің

о ГРМПИ

захстан,

виде виде ктур с ухои отражает инвших ривскую, Синатерики. взозое-кайкинэшэмэ адвиговые, шое полоск по ходу иболее высвязаны с э коимиши пем севершговых де-Казахстанвозникли мые сдвицоченную пений. возоя Цено «перело--северо-зание в виде ноков. По-

шпу «моза-

На схеме использован комплексный системный подход, учитывающий возраст четырех главных реперных событий в развитии складчатых систем — время заложения геосинклинали и возраст главной складчатости, возраст орогенной и посторогенной плутонических серий.

Условные обозначения к схеме тектонического районирования Казахстана

1— докембрийские складчатые области: активизированные выступы докембрийского фундамента (фрагменты карельской складчатой области). Палеозойские складчатые системы (цифры в кружках): начальные каледонские — салаирские, 2 (Бозшакольская — 1 и др.); раннекаледонские таконские, 3 (Степнякская — 2, Чингиз-Тарбагатайская — 3, Чу-Балхашская — 4, Алтае-Саянская — 5, Северо-Тянь-Шаньская — 6); среднекаледонские, 4 (Центрально-Казахстанская — 7); позднекаледонские, 5 (Жамансарысуйская — 8); раннегерцинские, 6 (Уральская — 9, Зайсанская — 10, Джунгаро-Балхашская — 11, Каратау-Срединно-Тянь-Шаньская — 12); позднегерцинские, 7 (Валерьяновская — 13, Южно-Тенизская — 14, Калбинская — 15, Жезказганская — 16, Саякская — 17). 8 — зоны тектоно-магматической активизации: а — каледонские, 6 — герцинские, номера в ромбиках (1 — Койтасская, 2 — Баянаульская, 3 — Успенская, 4 — Западно-Чингизская, 5 — Акжал-Аксоранская, 6 — Жаильма-Караобинская, 7 — Восточно-Жамансарысуйская, 8 — Тлеумбетская). 9 — раннекиммерийская складчатая система (Мангышлакская — 18). 11 — главные разломы. 12 — эпигерцинский платформенный чехол. 13 — альпийские средне- и высокогорные поднятия.

Рисунок 2 – Схема тектонического районирования Казахстана [6]

тиграфический разрез которых характеризуется разнообразием и большой сложностью. Поэтому, говоря о стратиграфии структур этой системы, отметим лишь ее отдельные отличительные особенности:

- 1) В пределах системы довольно часто отмечаются крупные срединные массивы и отдельные блоки докембрийских образований, состоящие из метаморфических пород различного генезиса. По возрасту среди них преобладают протерозойские образования при подчиненной роли архейских. В пределах данной системы обособляются два крупных выхода докембрийских срединных массивов в пределах Казахстана Кокшетауский на севере и Улытау на западном обрамлении выходов системы на поверхность.
- 2) Структуры западной и центральной части системы консолидированы в позднеордовикское время, поэтому они относятся к ранним каледо-

нидам (так называемые, такониды); в этих структурах силурийские отложения отсутствуют вовсе.

- 3) Восточные структуры системы относятся к поздним каледонидам, поскольку в этих структурах консолидация континентальной земной коры произошла в позднем силуре.
- 4) В пределах системы отмечаются структурно-формационные зоны как «эвгеосинклинального», так и «миогеосинклинального» характера. Первые характеризуются большой ролью вулканогенных образований в разрезе и интенсивной дислоцированностью слагающих их отложений, тогда как «миогеосинклинальные» структуры выделяются отсутствием или подчиненной ролью вулканогенных образований и сравнительно низкой дислоцированностью слагающих их преимущественно осадочных отложений [7].
- 5) В пределах системы обнажаются, так называемые, «офиолитовые палеозойские зоны» [1,7].

6) Во многих струк образования представ, цией, свидетельствующ ного этапа развития эт риоду. Выходы карбон правило, ограничены шие мульды на склад образованиях.

 В пределах сист ных прогибов и впадин озойско-мезозой-кайно (Торгайский прогиб, ская впадины).

Интрузивный магм мы развит широко. Н проявления интрузиви кембрийский период (обро-норитовый злато но-ультрамафитовый и т.д.), конец ордовик массивы гранитов, грарендинского и кырых девонский период (инкомплексы).

Тектоническое ра характеризуется боль отмечалось выше, в ствуют структурно-фо геосинклинального», ного» характера. При зоны по своей геолог поставляются с офиораннепалеозойские ордовикские и силура в интенсивные складк

Чингиз-Тарбагатайс система в виде сравно тягивается от Баянаул юго-восток до юго-вос ки. Она входит в Цен своей северо-восточно сывается вкратце. Си ном обрамлении кон Кокшетау-Северо-Тян севере) и герцинида системы (в централы К восточной и северо мыкают структурно-ф ской герцинской скла

Складчатая систе структурно-формаци щих между собой п северо-западном ок ются Киндыктинская ио-формационные зо и юго-восточных чапараллельно вытяну га с юго-запада на Кан-Чингизская, Аб структурно-формаци ская зона в своем к

6) Во многих структурах системы девонские празования представлены молассовой формашией, свидетельствующей о наступлении ороген-■ого этапа развития этих структур к данному периоду. Выходы карбон-пермских отложений, как правило, ограничены и слагают обычно небольшие мульды на складчатых раннепалеозойских

7) В пределах системы отмечается ряд крупных прогибов и впадин, заполненных верхнепале-ОЗОЙСКО-мезозой-кайнозойскими отложениями (Торгайский прогиб, Чу-Сарысуйская и Тенизская впадины).

Интрузивный магматизм в структурах системы развит широко. Наиболее важными вехами проявления интрузивного магматизма являются кембрийский период (расслоенный перидотит-габбро-норитовый златогорский комплекс, щелочно-ультрамафитовый красномайский комплекс и т.д.), конец ордовика-начало силура (крупные массивы гранитов, гранодиоритов и диоритов зерендинского и кырыккудукского комплексов) и девонский период (ишимский и орлиногорский комплексы).

Тектоническое развитие структур системы характеризуется большим разнообразием. Как отмечалось выше, в пределах системы присутствуют структурно-формационные зоны как «эвгеосинклинального», так и «миогеосинклинального» характера. Причем «эвгеосинклинальные» зоны по своей геологической природе четко сопоставляются с офиолитовыми зонами. В целом раннепалеозойские отложения (кембрийские, ордовикские и силурийские образования) смяты в интенсивные складки [1].

Чингиз-Тарбагатайская каледонская складчатая система в виде сравнительно узкой полосы протягивается от Баянаульских гор с северо-запада на юго-восток до юго-восточной границы республики. Она входит в Центральный Казахстан только своей северо-восточной частью и поэтому описывается вкратце. Система на своем юго-западном обрамлении контактирует с каледонидами Кокшетау-Северо-Тянь-Шаньской системы (на севере) и герцинидами Джунгаро-Балхашской системы (в центральной и юго-западной частях). К восточной и северо-восточной части к ней примыкают структурно-формационные зоны Зайсанской герцинской складчатой системы.

Складчатая система состоит из нескольких структурно-формационных зон, контактирующих между собой по глубинным разломам. На северо-западном окончании системы выделяются Киндыктинская и Баянаульская структурно-формационные зоны, тогда как в центральных и юго-восточных частях системы обособляются параллельно вытянутые и сменяющие друг друга с юго-запада на северо-восток Акшатауская, Кан-Чингизская, Абралинская и Акбастауская структурно-формационные зоны. Кан-Чингизская зона в своем юго-восточном продолжении сменяется Тарбагатайской зоной.

Герцинская складчатая система

Жонгаро-Балхашская складчатая система также рассматривается в составе Казахстанской складчатой области, однако эта система является герцинской структурой, стабилизация которой происходила в конце позднего палеозоя.

Тектонические структуры системы охватывают юг Центрального Казахстана. Система обособляется на геологической карте Казахстана в виде ромба, по середине которого в субширотном направлении протягивается бассейн озера Балхаш. С севера, запада и юга система опоясывается выходами каледонид Кокшетау-Северо-Тянь-Шанской складчатой системы, с востока и северо-востока она граничит с каледонидами Чингиз-Тарбагатайской системы.

Система объединяет в себе около двух десятков дислоцированных структурно-формационных зон и несколько перекрытых мезозой-кайнозойскими отложениями крупных впадин.

В пределах данной системы разрезы докембрийской континентальной коры на поверхности не обнажаются, хотя присутствие их блоков и массивов на глубоких горизонтах не исключается. Наиболее древними породами в стратиграфическом разрезе системы являются венд-кембрийские отложения, широко развиты также ордовикско-силурийские отложения. Среди разрезов нижнепалеозойских образований выделяются два типа, принципиально различающиеся по составу слагающих их комплексов. Так, первый тип разреза отмечается в пределах относительно стабильных блоков и представлен преимущественно осаилод йоннэнирдоп идп имкинэжолто иманрод вулканогенных. Второй тип нижнепалеозойских разрезов свойственен антиклинориям. Нижнепалеозойский разрез этих структурно-формационных зон (Итмурынды-Тюлькуламская и Тектурмасская) характеризуется преимущественно вулканогенным и осадочно-вулканогенным составом и интенсивной дислоцированностью. Девонские отложения в пределах Жонгаро-Балхашской складчатой системы широко распространены. В пределах некоторых структурно-формационных зон нижний девон представлен туфогенно-терригенными отложениями с морской фауной при подчиненной роли вулканитов. В среднем девоне в ряде зон появляются красноцветные и пестроцветные осадочные отложения, местами с вулканитами андезито-базальтового состава. Верхнедевонские отложения представлены, как правило, осадочными отложениями - морскими известняками, кремнисто-карбонатными и мергелистыми породами, кремнистыми алевролитами. Карбоновые образования представлены как осадочными, так и чисто вулканогенными породами, причем вулканиты характеризуются большим разнообразием состава (базальт-андезит-дацит-риолитовые и их субщелочные разновидности (трахибазальт-трахиандезит-трахидацит-аюлиты и тд.).

Тельбесский тектонический комплекс считается пограничным между каледонидами и герцинидами. Вопрос о границе каледонской и герцинской тектонических зон не решается однозначно, так как могут быть использованы разные признаки и событийного, и временного характера. Наиболее выразительным индикатором завершающего этапа тектонической эпохи являются орогенные вулкано-плутонические формации, образующиеся после главной складчатости. Таковыми являются образования Казахстанского девонского краевого вулкано-плутонического пояса. Вместе с тем краевой вулканический пояс является наложенной тектоно-магматической зоной и в значительной части заходит в области, подвергниеся складкообразованию гораздо раньше, местами располагаясь непосредственно на докембрийских массивах. Своеобразно проявление тектонических движений в среднем девоне, обычно выделяемых как тельбесская фаза. Г.Р. Бекжанов и др. (2000 г.) рассматривают формирование девонского ВПП как завершающее событие каледонской тектонической эпохи.

Зоны тектономагматической активизации

Главным новшеством предлагаемой схемы тектонического районирования Казахстана (рисунок 2) является системная проработка вопросов тектоно-магматической активизации (ТМА). На схеме изображены различные зоны ТМА – структуры, весьма важные для размещения редкометалльных месторождений.

1. Резонансные, как правило, сопряженные со своими складчатыми системами зоны ТМА, среди которых можно выделить: а) комплексные, в которых имеются как активизационные аналоги известково-щелочных орогенных магматитов, так и аналоги посторогенных субщелочных (каледонские зоны ТМА: Кокшетауская и др.; герцинские: Успенская, Акжал-Аксоранская, Жаильма-Караобинская, Восточно-Жамансарысуйская и др.); б) зоны, синхронные посторогенной стадии, включающие субщелочные и щелочные магматиты, распространенные, в основном, на северо-востоке Казахстана (Койтасская, Баянаульская, Тлеумбетская и др.).

2. Второй тип зон ТМА на схеме не показан из-за мелкого ее масштаба, поэтому о нем стоит сказать несколько предварительных слов. В 2007 г. было завершено составление геологической кар-

ты масштаба 1:500 000 (ГК-2007 – ред. В.И. Серых, составители И.В. Глухан, В.И. Серых, Н.М. Гридина, И.И. Кондрашенков). После нанесения на ГК-2007 инструментально установленных химических составов всех пород и всех надежных радиологических датировок оказалось: а) каждый ороген имеет свою собственную посторогенную магматическую серию и возраст ее соответствует возрасту орогенной стадии следующего цикла; б) выявилось одно закономерное исключение - посторогенный магматизм отсутствует во всех позднегерцинских складчатых системах, завершающих геосинклинальный этап развития региона; в) знакомство с геологией моноциклических складчатых поясов, в т.ч. и личное (Памир, Урал, Альпийский пояс и др.), показало отсутствие в них посторогенного магматизма. Уральский складчатый пояс в основной своей части является моноциклическим. Однако следствием его соседства с позднегерцинской Валерьяновской складчатой системой, примыкающей к нему со стороны Казахстана, Уральский пояс на значительном отрезке обретает посторогенную активизационную субщелочную вулкано-плутоническую серию (см. описание степнинского интрузивного комплекса в работе А.В. Тевелева и др., 2006г.). Этот пример еще раз подтверждает выявленную закономерность: последующий орогенный цикл вызывает зарождение в образованиях предыдущего цикла посторогенной субщелочной активизационной магматической серии.

Из этих данных следует, что посторогенные субщелочные магматические серии формируются за счет энергии геосинклинально-орогенного процесса, могут быть еще одним тектоническим рубежом и в этом качестве вполне пригодны для целей тектонического районирования территорий, но пригодны к использованию только в полициклических складчатых областях. Именно такой областью является Казахстан.

3. Еще одним дополнением к тектоническому районированию региона является увеличение числа позднегерцинских складчатых систем. К выделенной ранее Саякской (складчатой) системе добавлены позднегерцинские складчатые системы Валерьяновская, Южно-Тенизская, Калбинская и Жезказганская (рисунок 2). Если в ранних герцинидах осадконакопление завершается в раннем визе, а орогенез имеет место в позднем визе, то в поздних герцинидах оно продолжается до позднего карбона и ранней-поздней перми, после чего наступает орогенная стадия [7].

СПИСОК ЛИТЕРАТУРЬ

- Бекжанов Г.Р., Кошкин В.Я ресурсов Республики Каза
- Геология ССР. Том XX. Цен 380 с.
- 3. Серых В.И. Региональная
- Богданов А.А. Основные ч 1959.
- Богданов А.А. Тектоничес каледонского срединного
- Сеитов Н., Сеитова Ш.Н. И ной коры территории Каз
- 7. Абдуллин А.А. Геология и