УДК 550.83

ОПРЕДЕЛЕНИЕ ЗОЛЬНОСТИ ТВЕРДОГО ТОПЛИВА ПО АННИГИЛЯЦИОННОМУ ГАММА-ИЗЛУЧЕНИЮ

© 2014 г. Ю. Н. Пак, Д. Ю. Пак

Карагандинский государственный технический университет E-mail: Pak_gos@mail.ru Поступила в редакцию 04.12.2013 г.

Показана возможность инструментального определения зольности твердого топлива по аннигиляционному гамма-излучению. Получены аналитические выражения для оценки чувствительностей. Метод рекомендован для анализа высокозольных углей в больших массах без специальной пробоподготовки.

DOI: 10.7868/S0023117714050107

В практике инструментального анализа твердого топлива находят применение различные ядерно-физические методы [1, 2]. Среди них наибольшую популярность получили методы с применением гамма-излучения. В зависимости от энергии первичного и вторичного излучений, геометрии измерения (расположения источника и детектора относительно объекта контроля) и непосредственно от вида объекта контроля (пробы угля, вагон, транспортный поток, условия естественного залегания и др.) применяются различные модификации гамма-методов [3]. Отличительные особенности гамма-методов: сравнительная простота аппаратурной реализации метода, высокая производительность и недеструктивность анализа, а также достаточная глубинность исследований. Глубинность инструментальных ядерно-физических методов, характеризующая представительность анализа, прежде всего зависит от энергии применяемого гамма-излучения. В низкоэнергетической области (менее ~100 кэВ) преобладающими процессами взаимодействия для большинства породообразующих элементов являются фотоэлектрическое поглощение и комптоновское рассеяние. В среднеэнергетической области (выше ~200 кэВ) преобладает комптоновское рассеяние, а роль фотоэффекта заметно снижается. В высокоэнергетической области (~ выше 1.5 МэВ) наряду с комптоновским рассеянием происходит поглощение гамма-излучения с образованием электронно-позитронной пары с последующим испусканием аннигиляционного излучения с энергией 0.511 МэВ [4].

Сечение образования пар в общем случае — это сложная функция, зависящая от энергии гаммаизлучения и эффективного атомного номера среды, характеризующего гамма ослабляющие свойства. На рис. 1 представлены зависимости макроскопического сечения образования пар от энергии гамма-излучения (a) и атомного номера элемента (δ). С увеличением энергии гамма-излучения закономерно возрастает вероятность образования электронно-позитронных пар независимо от атомного номера элемента. Сечение образования пар зависит от атомного номера элемента примерно в соотношении Z^2 . Пропорциональная зависимость между сечением образования пар и атомным номером элемента (эффективным атомным номером для сложной среды) позволяет использовать аннигиляционное гамма-излучение для анализа состава природных сред и, в частности, контроля зольности твердого топлива.

Возможность применения аннигиляционного гамма-излучения для контроля состава и качества сырьевых материалов мало исследована.

Аналитическое выражение для интенсивности аннигиляционного гамма-излучения (N) в приближении нулевого зонда (точечные источник первичного и детектор вторичного излучений совмещены в одной точке) получено в работе [5]:

$$N = \frac{KQ}{2h} \eta \rho x \frac{\Phi(\xi) \cdot e^{\xi}}{f(\xi) + 2},\tag{1}$$

где K — коэффициент пропорциональности; Q — активность источника; h — расстояние от источника до поверхности среды; η — коэффициент заполнения; ρ — кажущаяся плотность среды; x — макроскопическое сечение образования электронно-позитронных пар средой. При этом ξ выражена как

$$\xi = \eta \rho(\mu_0 + \mu_x) \cdot h,$$

где μ_0 , μ_x — массовые коэффициенты ослабления соответственно первичного и аннигиляционного

Рис. 1. Зависимости макроскопического сечения образования пар от энергии гамма-излучения (*a*) и атомного номера элемента (*б*). Цифры у кривых — энергия, МэВ.

гамма-излучений средой; а функции $\Phi(\xi)$ (функция Кинга) и $f(\xi)$ имеют вид:

$$\Phi(\xi) = \int_{1}^{\infty} \frac{e^{-\xi t}}{t^2} dt,$$
$$f(\xi) = \left\{ \frac{\xi [1 - \xi I(\xi)] - \frac{1}{2}}{e^{\xi} \cdot \Phi(\xi)} \right\}^2 - 2$$

Численными расчетами показано, что с погрешностью не более 5% функцию $f(\xi)$ можно аппроксимировать выражением

$$f(\xi) = \frac{\xi}{\xi + 0.5 + 0.39 \ln(\xi + 1)}.$$

Функция монотонно возрастает с ростом величины ξ и принимает значения от 0 ($\xi = 0$) до 1 ($\xi = \infty$).

Метрологические характеристики и возможности гамма-аннигиляционного метода рассмотрены на примере твердого топлива, состоящего из органической массы (углерод) и минеральной (золообразующей) массы, представленной оксидами кремния и железа. С учетом этого массовые коэффициенты х, μ_0 и μ_x выразим через парциальные коэффициенты ослабления углерода (*C*) и золообразующей части угля (*A*):

$$x = x^{C} + A(x^{A} - x^{C}),$$

$$\mu_{O} = \mu_{O}^{C} + A(\mu_{O}^{A} - \mu_{O}^{C}),$$

$$\mu_{A} = \mu_{X}^{C} + A(\mu_{X}^{A} - \mu_{X}^{C}),$$
(2)

где *А* – зольность угля. Индексы *А* и *С* относятся к золе и углероду.

Плотность угля с учетом плотности органической массы ρ_C и минеральной ρ_A частей можно выразить так:

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 5 2014

$$\rho = \frac{\rho_A \cdot \rho_C}{\rho_A + A(\rho_C - \rho_A)}.$$
(3)

С учетом (2) и (3) получим в явном виде зависимость интенсивности аннигиляционного гамма-излучения от влияющих факторов (зольность, плотность и т.д.).

$$N = \frac{KQ}{2h} \eta \frac{\rho_A \cdot \rho_C}{\rho_A + A(\rho_C - \rho_A)} \Big[x^C + A(x^A - x^C) \Big] \times \\ \times \frac{\Phi(\xi) \cdot e^{\xi}}{f(\xi) + 2},$$
(4)
rde $\xi = \eta \frac{\rho_A \cdot \rho_C}{\rho_A + A(\rho_C - \rho_A)} \Big[\mu^C + A(\mu^A - \mu^C) \Big] h; \\ \mu^C = \mu^C_O + \mu^C_X; \quad \mu^A = \mu^A_O + \mu^A_X.$

Важнейшим метрологическим параметром любого инструментального метода анализа служит чувствительность, характеризующая относительное приращение (dN/N) измеряемой интенсивности при единичном изменении влияющего параметра, в данном случае зольности угля:

$$S_A = \frac{dN}{NdA}, \quad S_A = \frac{dN}{NdA}.$$
 (5)

Дифференцируя (4) по зольности *A* с учетом (5), получим формулу для оценки чувствительности гамма-аннигиляционного метода к зольности угля

$$S_A = \frac{\Delta x}{x} - \frac{\Delta \mu}{\mu} \cdot f(\xi) + \Delta \rho \rho [1 - f(\xi)], \qquad (6)$$

где
$$\Delta x = x^A - x^C$$
; $\Delta \mu = \mu^A - \mu^C$; $\Delta \rho = \frac{\rho_A - \rho_C}{\rho_A \cdot \rho_C}$.

Из выражения (6) следует, что дифференциация результатов метода обеспечивается различием минеральной и органической частей угля в

Рис. 2. Зависимости чувствительности к зольности (*a*) и насыпной плотности (*б*) от энергии гамма-излучения. Цифры у кривых – зольность, %.

значениях макроскопических сечений образования пар (первое слагаемое), полных массовых коэффициентов ослабления первичного и аннигиляционного излучений (второе слагаемое) и плотностей (третье слагаемое). Вклад последних двух слагаемых выражения (6) также зависит от функции $f(\xi)$, монотонно меняющейся от 0 до 1 в зависимости от величины ξ , являющейся сложной функцией массовых коэффициентов ослабления составных компонентов угля и их плотностей. Зависимости чувствительности к зольности угля от энергии первичного гамма-излучения представлены на рис. 2, *а*.

Наибольший вклад в чувствительность вносит различие составных компонентов угля в макроскопических сечениях образования пар. Относительная доля второго и третьего слагаемых, обусловленная различием составных компонентов угля в значениях полных коэффициентов ослабления и плотности, незначительна, и она практически не зависит от энергии. В целом наблюдается тенденция незначительного снижения чувствительности гамма-аннигиляционного метода к зольности с ростом энергии первичного гаммаизлучения. Независимо от энергии чувствительность S_A выше для малозольных и ниже для высокозольных углей.

Один из дестабилизирующих факторов при инструментальном анализе рядовых углей в больших массах — это переменная насыпная плотность. В математической модели гамма-аннигиляционного метода [выражение (4)] насыпная плотность представлена произведением кажущейся плотности на коэффициент заполнения η, значение которого варьирует в основном за счет переменного гранулометрического состава.

Используя аналогичный (как в случае нахождения величины S_4) прием, нетрудно найти чувствительность метода к насыпной плотности за счет вариации коэффициента заполнения:

$$S_{\eta} = \frac{1}{\eta} [1 - f(\xi)].$$
 (7)

Наблюдается слабая дифференциация чувствительности S_{η} к насыпной плотности (коэффициенту заполнения) в зависимости от качества угля и энергии применяемого гамма-излучения.

Анализ зависимостей, изображенных на рис. 2, *а* и *б*, свидетельствует о достаточно высокой чувствительности метода к зольности и сравнительно низкой чувствительности к насыпной плотности, что позволяет рекомендовать метод для анализа рядовых углей переменного гранулометрического состава.

В условиях действия возмущающих факторов на результаты инструментального метода оптимизацию его параметров следует проводить с точки зрения максимальной чувствительности к определяемому параметру (в данном случае – к зольности) и минимальной чувствительности к дестабилизирующему параметру (в данном случае к насыпной плотности), при которых обеспечивается минимальная методическая погрешность:

$$\sigma = \sqrt{\Sigma \left(\frac{S_i}{S_A}\right)^2} \cdot \Pi_i = \min, \qquad (8)$$

где Д_{*i*} – дисперсия *i*-го возмущающего фактора.

Результаты полученных теоретических значений чувствительности к зольности (1.16%/проц. – т.е. в расчете на процент зольности) находят удовлетворительное согласие с ранними [6] экспериментальными данными (0.96%/проц.).

Проверка метрологических характеристик гамма-аннигиляционного метода выполнена с помощью стандартных проб рядового угля с зольностью 21.3 и 33.6% и первичного гамма-излуча-

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 5 2014

теля Co⁶⁰ (~1.25 МэВ). Уголь многократно засыпали в измерительное устройство с габаритами $35 \times 40 \times 50$ см. Насыпную массу стандартных проб переменной крупности (до 100 мм) варьировали за счет изменяющегося коэффициента заполнения в интервале 0.63-0.71. Относительное среднеквадратическое отклонение насыпной плотности за счет непостоянства коэффициента заполнения составило 2.8%. Экспериментальные значения чувствительности к зольности S_A и насыпной плотности S_n составили соответственно 1.08 и 0.34%/проц. Нетрудно определить, что реальные флуктуации насыпной плотности, некоррелируемые с зольностью угля, при экспериментально полученных чувствительностях внесут, согласно (8), погрешность определения зольности, равную 0.88 абс. %.

Для учета влияния насыпной плотности за счет вариации коэффициента заполнения измерительного объема предложено нормирование регистрируемой интенсивности аннигиляционного излучения на величину альбедо гамма-излучения. Такое нормирование продиктовано тем, что спектр вторичного излучения в интервале выше ~200 кэВ сформирован за счет комптоновского рассеяния, вероятность которого в этом энергетическом диапазоне в несколько раз превышает вероятность фотоэлектрического поглощения даже для наиболее тяжелого золообразующего элемента - железа, поэтому интенсивность рассеянного гамма-излучения в этом энергетическом интервале будет пропорциональна насыпной плотности угля, что позволяет путем нормирования интенсивности аннигиляционного излучения на величину альбедо гамма-излучения свести к минимуму возмущающее влияние переменной насыпной плотности угля. Более полное исключение влияния непостоянства насыпной плотности осуществляется выбором оптимальной ширины энергетического окна в области выше 200 кэВ.

Лабораторными испытаниями, проведенными на крупнодисперсном рядовом угле, показана возможность инструментального определения зольности угля в больших массах (~60 кг) без специальной пробоподготовки.

В таблице дано сопоставление результатов определения зольности угля гамма-аннигиляционным (A_r) и термовесовым (A_τ) способами.

Среднее квадратическое отклонение результатов сравниваемых методов анализа составило 1.96% в интервале изменения зольности 27.5-48.8%. При этом погрешность термовесового метода, оцененная путем сравнения данных анализа основной и контрольных проб, полученных из одной первичной, составила 1.18%. Метод целесообразнее использовать для анализа высокозольных углей (A > 25%), применительно к кото-

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 5 2014

0			
Сопоставление	результатов	определения	зольности
	peoplateren	определении	000000000000000000000000000000000000000

$A_{_{\Gamma}},\%$	$A_{\mathrm{T}},\%$	Абсолютное отклонение, %	Относитель- ное отклоне- ние, %
34.2	35.1	-0.9	2.6
47.0	46.4	+0.4	0.9
48.8	47.4	+1.4	2.9
27.5	29.4	-1.9	6.5
30.8	29.2	+1.6	5.5
35.8	34.0	+1.8	5.3
36.1	37.7	-1.6	4.2
24.8	26.5	-1.7	6.4
37.3	38.6	-1.3	3.4
42.9	40.4	+2.5	6.2
36.2	34.4	+1.8	5.2
45.3	46.8	-1.5	3.2
37.0	37.8	-0.8	2.1
42.1	40.2	+1.9	4.7
46.0	44.0	+2.0	4.5
33.4	35.3	-1.9	5.4

рым традиционные гамма-методы малоэффективны ввиду низкой чувствительности.

Таким образом, предлагаемый гамма-аннигиляционный способ, обладающий сравнительно высокой чувствительностью к зольности, достаточной глубинностью исследований (~20 см) и инвариантностью к переменной насыпной плотности, может быть применен для представительного контроля качества твердого топлива в больших массах без специальной пробоподготовки.

СПИСОК ЛИТЕРАТУРЫ

- Старчик Л.П., Пак Ю.Н. Ядерно-физические методы контроля качества твердого топлива. М.: Недра, 1985. 224 с.
- 2. Клемпнер К.С., Васильев А.Г. Физические методы контроля зольности угля, М.: Недра, 1978. 174 с.
- Пак Ю.Н., Пак Д.Ю. Методы и приборы ядернофизического анализа углей. Караганда: Изд-во КарГТУ, 2012. 186 с.
- Альфа-бета и гамма-спектроскопия / Под ред. Зигбана К. М.: Атомиздат, 1968. Вып. 1. 568 с.
- 5. *Пак Ю.Н.*, *Вдовкин А.В.* // Атомная энергия. 1990. Т. 69. Вып. 2. С. 107.
- 6. *Sowerby B.D., Ngo V.N.* // Nucl. Instrum. Methods. 1981. № 2. P. 429.